summaryrefslogtreecommitdiffstats
path: root/src/segtree.c
blob: 34a001613eabac2ef57ebb5793bea689e44b661c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
/*
 * Copyright (c) 2008-2012 Patrick McHardy <kaber@trash.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * Development of this code funded by Astaro AG (http://www.astaro.com/)
 */

#include <stdlib.h>
#include <inttypes.h>
#include <arpa/inet.h>

#include <rule.h>
#include <expression.h>
#include <gmputil.h>
#include <utils.h>
#include <rbtree.h>

/**
 * struct seg_tree - segment tree
 *
 * @root:	the rbtree's root
 * @type:	the datatype of the dimension
 * @dwidth:	width of the dimension
 * @byteorder:	byteorder of elements
 */
struct seg_tree {
	struct rb_root			root;
	const struct datatype		*keytype;
	unsigned int			keylen;
	const struct datatype		*datatype;
	unsigned int			datalen;
	enum byteorder			byteorder;
};

enum elementary_interval_flags {
	EI_F_INTERVAL_END	= 0x1,
	EI_F_INTERVAL_OPEN	= 0x2,
};

/**
 * struct elementary_interval - elementary interval [left, right]
 *
 * @rb_node:	seg_tree rb node
 * @list:	list node for linearized tree
 * @left:	left endpoint
 * @right:	right endpoint
 * @size:	interval size (right - left)
 * @flags:	flags
 * @expr:	associated expression
 */
struct elementary_interval {
	union {
		struct rb_node		rb_node;
		struct list_head	list;
	};

	mpz_t				left;
	mpz_t				right;
	mpz_t				size;

	enum elementary_interval_flags	flags;
	struct expr			*expr;
};

static struct output_ctx debug_octx = {};

static void seg_tree_init(struct seg_tree *tree, const struct set *set,
			  struct expr *init)
{
	struct expr *first;

	first = list_entry(init->expressions.next, struct expr, list);
	tree->root	= RB_ROOT;
	tree->keytype	= set->keytype;
	tree->keylen	= set->keylen;
	tree->datatype	= set->datatype;
	tree->datalen	= set->datalen;
	tree->byteorder	= first->byteorder;
}

static struct elementary_interval *ei_alloc(const mpz_t left, const mpz_t right,
					    struct expr *expr,
					    enum elementary_interval_flags flags)
{
	struct elementary_interval *ei;

	ei = xzalloc(sizeof(*ei));
	mpz_init_set(ei->left, left);
	mpz_init_set(ei->right, right);
	mpz_init(ei->size);
	mpz_sub(ei->size, right, left);
	if (expr != NULL)
		ei->expr = expr_get(expr);
	ei->flags = flags;
	return ei;
}

static void ei_destroy(struct elementary_interval *ei)
{
	mpz_clear(ei->left);
	mpz_clear(ei->right);
	mpz_clear(ei->size);
	if (ei->expr != NULL)
		expr_free(ei->expr);
	xfree(ei);
}

/**
 * ei_lookup - find elementary interval containing point p
 *
 * @tree:	segment tree
 * @p:		the point
 */
static struct elementary_interval *ei_lookup(struct seg_tree *tree, const mpz_t p)
{
	struct rb_node *n = tree->root.rb_node;
	struct elementary_interval *ei;

	while (n != NULL) {
		ei = rb_entry(n, struct elementary_interval, rb_node);

		if (mpz_cmp(p, ei->left) >= 0 &&
		    mpz_cmp(p, ei->right) <= 0)
			return ei;
		else if (mpz_cmp(p, ei->left) <= 0)
			n = n->rb_left;
		else if (mpz_cmp(p, ei->right) > 0)
			n = n->rb_right;
	}
	return NULL;
}

static void ei_remove(struct seg_tree *tree, struct elementary_interval *ei)
{
	rb_erase(&ei->rb_node, &tree->root);
}

static void __ei_insert(struct seg_tree *tree, struct elementary_interval *new)
{
	struct rb_node **p = &tree->root.rb_node;
	struct rb_node *parent = NULL;
	struct elementary_interval *ei;

	while (*p != NULL) {
		parent = *p;
		ei = rb_entry(parent, struct elementary_interval, rb_node);

		if (mpz_cmp(new->left, ei->left) >= 0 &&
		    mpz_cmp(new->left, ei->right) <= 0)
			break;
		else if (mpz_cmp(new->left, ei->left) <= 0)
			p = &(*p)->rb_left;
		else if (mpz_cmp(new->left, ei->left) > 0)
			p = &(*p)->rb_right;
	}

	rb_link_node(&new->rb_node, parent, p);
	rb_insert_color(&new->rb_node, &tree->root);
}

static bool segtree_debug(void)
{
#ifdef DEBUG
	if (debug_level & DEBUG_SEGTREE)
		return true;
#endif
	return false;
}

/**
 * ei_insert - insert an elementary interval into the tree
 *
 * @tree:	the seg_tree
 * @new:	the elementary interval
 *
 * New entries take precedence over existing ones. Insertions are assumed to
 * be ordered by descending interval size, meaning the new interval never
 * extends over more than two existing intervals.
 */
static void ei_insert(struct seg_tree *tree, struct elementary_interval *new)
{
	struct elementary_interval *lei, *rei;
	mpz_t p;

	mpz_init2(p, tree->keylen);

	/*
	 * Lookup the intervals containing the left and right endpoints.
	 */
	lei = ei_lookup(tree, new->left);
	rei = ei_lookup(tree, new->right);

	if (segtree_debug())
		pr_gmp_debug("insert: [%Zx %Zx]\n", new->left, new->right);

	if (lei != NULL && rei != NULL && lei == rei) {
		/*
		 * The new interval is entirely contained in the same interval,
		 * split it into two parts:
		 *
		 * [lei_left, new_left) and (new_right, rei_right]
		 */
		if (segtree_debug())
			pr_gmp_debug("split [%Zx %Zx]\n", lei->left, lei->right);

		ei_remove(tree, lei);

		mpz_sub_ui(p, new->left, 1);
		if (mpz_cmp(lei->left, p) <= 0)
			__ei_insert(tree, ei_alloc(lei->left, p, lei->expr, 0));

		mpz_add_ui(p, new->right, 1);
		if (mpz_cmp(p, rei->right) < 0)
			__ei_insert(tree, ei_alloc(p, rei->right, lei->expr, 0));
		ei_destroy(lei);
	} else {
		if (lei != NULL) {
			/*
			 * Left endpoint is within lei, adjust it so we have:
			 *
			 * [lei_left, new_left)[new_left, new_right]
			 */
			if (segtree_debug()) {
				pr_gmp_debug("adjust left [%Zx %Zx]\n",
					     lei->left, lei->right);
			}

			mpz_sub_ui(lei->right, new->left, 1);
			mpz_sub(lei->size, lei->right, lei->left);
			if (mpz_sgn(lei->size) < 0) {
				ei_remove(tree, lei);
				ei_destroy(lei);
			}
		}
		if (rei != NULL) {
			/*
			 * Right endpoint is within rei, adjust it so we have:
			 *
			 * [new_left, new_right](new_right, rei_right]
			 */
			if (segtree_debug()) {
				pr_gmp_debug("adjust right [%Zx %Zx]\n",
					     rei->left, rei->right);
			}

			mpz_add_ui(rei->left, new->right, 1);
			mpz_sub(rei->size, rei->right, rei->left);
			if (mpz_sgn(rei->size) < 0) {
				ei_remove(tree, rei);
				ei_destroy(rei);
			}
		}
	}

	__ei_insert(tree, new);

	mpz_clear(p);
}

/*
 * Sort intervals according to their priority, which is defined inversely to
 * their size.
 *
 * The beginning of the interval is used as secondary sorting criterion. This
 * makes sure that overlapping ranges with equal priority are next to each
 * other, allowing to easily detect unsolvable conflicts during insertion.
 *
 * Note: unsolvable conflicts can only occur when using ranges or two identical
 * prefix specifications.
 */
static int interval_cmp(const void *p1, const void *p2)
{
	const struct elementary_interval *e1 = *(void * const *)p1;
	const struct elementary_interval *e2 = *(void * const *)p2;
	mpz_t d;
	int ret;

	mpz_init(d);

	mpz_sub(d, e2->size, e1->size);
	if (mpz_cmp_ui(d, 0))
		ret = mpz_sgn(d);
	else
		ret = mpz_cmp(e1->left, e2->left);

	mpz_clear(d);
	return ret;
}

static bool interval_conflict(const struct elementary_interval *e1,
			      const struct elementary_interval *e2)
{
	if (mpz_cmp(e1->left, e2->left) <= 0 &&
	    mpz_cmp(e1->right, e2->left) >= 0 &&
	    mpz_cmp(e1->size, e2->size) == 0 &&
	    !expr_cmp(e1->expr->right, e2->expr->right))
		return true;
	else
		return false;
}

static unsigned int expr_to_intervals(const struct expr *set,
				      unsigned int keylen,
				      struct elementary_interval **intervals)
{
	struct elementary_interval *ei;
	struct expr *i, *next;
	unsigned int n;
	mpz_t low, high;

	mpz_init2(low, keylen);
	mpz_init2(high, keylen);

	/*
	 * Convert elements to intervals.
	 */
	n = 0;
	list_for_each_entry_safe(i, next, &set->expressions, list) {
		range_expr_value_low(low, i);
		range_expr_value_high(high, i);
		ei = ei_alloc(low, high, i, 0);
		intervals[n++] = ei;
	}
	mpz_clear(high);
	mpz_clear(low);

	return n;
}

/* This function checks for overlaps in two ways:
 *
 * 1) A new interval end intersects an existing interval.
 * 2) New intervals that are larger than existing ones, that don't intersect
 *    at all, but that wrap the existing ones.
 */
static bool interval_overlap(const struct elementary_interval *e1,
			     const struct elementary_interval *e2)
{
	if (mpz_cmp(e1->left, e2->left) == 0 &&
	    mpz_cmp(e1->right, e2->right) == 0)
		return false;

	return (mpz_cmp(e1->left, e2->left) >= 0 &&
	        mpz_cmp(e1->left, e2->right) <= 0) ||
	       (mpz_cmp(e1->right, e2->left) >= 0 &&
	        mpz_cmp(e1->right, e2->right) <= 0) ||
	       (mpz_cmp(e1->left, e2->left) <= 0 &&
		mpz_cmp(e1->right, e2->right) >= 0);
}

static int set_overlap(struct list_head *msgs, const struct set *set,
		       struct expr *init, unsigned int keylen)
{
	struct elementary_interval *new_intervals[init->size];
	struct elementary_interval *intervals[set->init->size];
	unsigned int n, m, i, j;

	n = expr_to_intervals(init, keylen, new_intervals);
	m = expr_to_intervals(set->init, keylen, intervals);

	for (i = 0; i < n; i++) {
		for (j = 0; j < m; j++) {
			if (interval_overlap(new_intervals[i], intervals[j]))
				return expr_error(msgs,
					new_intervals[i]->expr,
					"interval overlaps with an existing one");
		}
	}

	return 0;
}

static int set_to_segtree(struct list_head *msgs, struct set *set,
			  struct expr *init, struct seg_tree *tree, bool add)
{
	struct elementary_interval *intervals[init->size];
	struct expr *i, *next;
	unsigned int n;
	int err;

	/* We are updating an existing set with new elements, check if the new
	 * interval overlaps with any of the existing ones.
	 */
	if (add && set->init && set->init != init) {
		err = set_overlap(msgs, set, init, tree->keylen);
		if (err < 0)
			return err;
	}

	n = expr_to_intervals(init, tree->keylen, intervals);

	list_for_each_entry_safe(i, next, &init->expressions, list) {
		list_del(&i->list);
		expr_free(i);
	}

	/*
	 * Sort intervals by priority.
	 */
	qsort(intervals, n, sizeof(intervals[0]), interval_cmp);

	/*
	 * Insert elements into tree
	 */
	for (n = 0; n < init->size; n++) {
		if (init->set_flags & NFT_SET_MAP &&
		    n < init->size - 1 &&
		    interval_conflict(intervals[n], intervals[n+1]))
			return expr_binary_error(msgs,
					intervals[n]->expr,
					intervals[n+1]->expr,
					"conflicting intervals specified");
		ei_insert(tree, intervals[n]);
	}

	return 0;
}

static bool segtree_needs_first_segment(const struct set *set,
					const struct expr *init, bool add)
{
	if (add) {
		/* Add the first segment in three situations:
		 *
		 * 1) This is an anonymous set.
		 * 2) This set exists and it is empty.
		 * 3) This set is created with a number of initial elements.
		 */
		if ((set->flags & NFT_SET_ANONYMOUS) ||
		    (set->init && set->init->size == 0) ||
		    (set->init == init))
			return true;
	} else {
		/* If the set is empty after the removal, we have to
		 * remove the first non-matching segment too.
		 */
		if (set->init && set->init->size - init->size == 0)
			return true;
	}
	/* This is an update for a set that already contains elements, so don't
	 * add the first non-matching elements otherwise we hit EEXIST.
	 */
	return false;
}

static void segtree_linearize(struct list_head *list, const struct set *set,
			      const struct expr *init, struct seg_tree *tree,
			      bool add)
{
	bool needs_first_segment = segtree_needs_first_segment(set, init, add);
	struct elementary_interval *ei, *nei, *prev = NULL;
	struct rb_node *node, *next;
	mpz_t p, q;

	mpz_init2(p, tree->keylen);
	mpz_init2(q, tree->keylen);

	/*
	 * Convert the tree of open intervals to half-closed map expressions.
	 */
	rb_for_each_entry_safe(ei, node, next, &tree->root, rb_node) {
		if (segtree_debug())
			pr_gmp_debug("iter: [%Zx %Zx]\n", ei->left, ei->right);

		if (prev == NULL) {
			/*
			 * If the first segment doesn't begin at zero, insert a
			 * non-matching segment to cover [0, first_left).
			 */
			if (needs_first_segment && mpz_cmp_ui(ei->left, 0)) {
				mpz_set_ui(p, 0);
				mpz_sub_ui(q, ei->left, 1);
				nei = ei_alloc(p, q, NULL, EI_F_INTERVAL_END);
				list_add_tail(&nei->list, list);
			}
		} else {
			/*
			 * If the previous segment doesn't end directly left to
			 * this one, insert a non-matching segment to cover
			 * (prev_right, ei_left).
			 */
			mpz_add_ui(p, prev->right, 1);
			if (mpz_cmp(p, ei->left) < 0) {
				mpz_sub_ui(q, ei->left, 1);
				nei = ei_alloc(p, q, NULL, EI_F_INTERVAL_END);
				list_add_tail(&nei->list, list);
			} else if (add && ei->expr->ops->type != EXPR_MAPPING) {
				/* Merge contiguous segments only in case of
				 * new additions.
				 */
				mpz_set(prev->right, ei->right);
				ei_remove(tree, ei);
				ei_destroy(ei);
				continue;
			}
		}

		ei_remove(tree, ei);
		list_add_tail(&ei->list, list);

		prev = ei;
	}

	/*
	 * If the last segment doesn't end at the right side of the dimension,
	 * insert a non-matching segment to cover (last_right, end].
	 */
	if (mpz_scan0(prev->right, 0) != tree->keylen) {
		mpz_add_ui(p, prev->right, 1);
		mpz_bitmask(q, tree->keylen);
		nei = ei_alloc(p, q, NULL, EI_F_INTERVAL_END);
		list_add_tail(&nei->list, list);
	} else {
		prev->flags |= EI_F_INTERVAL_OPEN;
	}

	mpz_clear(p);
	mpz_clear(q);
}

static void set_insert_interval(struct expr *set, struct seg_tree *tree,
				const struct elementary_interval *ei)
{
	struct expr *expr;

	expr = constant_expr_alloc(&internal_location, tree->keytype,
				   tree->byteorder, tree->keylen, NULL);
	mpz_set(expr->value, ei->left);
	expr = set_elem_expr_alloc(&internal_location, expr);

	if (ei->expr != NULL) {
		if (ei->expr->comment)
			expr->comment = xstrdup(ei->expr->comment);
		if (ei->expr->ops->type == EXPR_MAPPING)
			expr = mapping_expr_alloc(&ei->expr->location, expr,
						  expr_get(ei->expr->right));
	}

	if (ei->flags & EI_F_INTERVAL_END)
		expr->flags |= EXPR_F_INTERVAL_END;
	if (ei->flags & EI_F_INTERVAL_OPEN)
		expr->elem_flags |= SET_ELEM_F_INTERVAL_OPEN;

	compound_expr_add(set, expr);
}

int set_to_intervals(struct list_head *errs, struct set *set,
		     struct expr *init, bool add)
{
	struct elementary_interval *ei, *next;
	struct seg_tree tree;
	LIST_HEAD(list);

	seg_tree_init(&tree, set, init);
	if (set_to_segtree(errs, set, init, &tree, add) < 0)
		return -1;
	segtree_linearize(&list, set, init, &tree, add);

	init->size = 0;
	list_for_each_entry_safe(ei, next, &list, list) {
		if (segtree_debug()) {
			pr_gmp_debug("list: [%.*Zx %.*Zx]\n",
				     2 * tree.keylen / BITS_PER_BYTE, ei->left,
				     2 * tree.keylen / BITS_PER_BYTE, ei->right);
		}
		set_insert_interval(init, &tree, ei);
		ei_destroy(ei);
	}

	if (segtree_debug()) {
		expr_print(init, &debug_octx);
		pr_gmp_debug("\n");
	}

	return 0;
}

static bool range_is_prefix(const mpz_t range)
{
	mpz_t tmp;

	mpz_init_set(tmp, range);
	mpz_add_ui(tmp, tmp, 1);
	mpz_and(tmp, range, tmp);
	return !mpz_cmp_ui(tmp, 0);
}

static struct expr *expr_value(struct expr *expr)
{
	switch (expr->ops->type) {
	case EXPR_MAPPING:
		return expr->left->key;
	case EXPR_SET_ELEM:
		return expr->key;
	default:
		BUG("invalid expression type %s\n", expr->ops->name);
	}
}

static int expr_value_cmp(const void *p1, const void *p2)
{
	struct expr *e1 = *(void * const *)p1;
	struct expr *e2 = *(void * const *)p2;
	int ret;

	ret = mpz_cmp(expr_value(e1)->value, expr_value(e2)->value);
	if (ret == 0) {
		if (e1->flags & EXPR_F_INTERVAL_END)
			return -1;
		else if (e2->flags & EXPR_F_INTERVAL_END)
			return 1;
	}

	return ret;
}

void interval_map_decompose(struct expr *set)
{
	struct expr **elements, **ranges;
	struct expr *i, *next, *low = NULL, *end;
	unsigned int n, m, size;
	mpz_t range, p;
	bool interval;

	if (set->size == 0)
		return;

	elements = xmalloc_array(set->size, sizeof(struct expr *));
	ranges = xmalloc_array(set->size * 2, sizeof(struct expr *));

	mpz_init(range);
	mpz_init(p);

	/* Sort elements */
	n = 0;
	list_for_each_entry_safe(i, next, &set->expressions, list) {
		compound_expr_remove(set, i);
		elements[n++] = i;
	}
	qsort(elements, n, sizeof(elements[0]), expr_value_cmp);
	size = n;

	/* Transform points (single values) into half-closed intervals */
	n = 0;
	interval = false;
	for (m = 0; m < size; m++) {
		i = elements[m];

		if (i->flags & EXPR_F_INTERVAL_END)
			interval = false;
		else if (interval) {
			end = expr_clone(i);
			end->flags |= EXPR_F_INTERVAL_END;
			ranges[n++] = end;
		} else
			interval = true;

		ranges[n++] = i;
	}
	size = n;

	for (n = 0; n < size; n++) {
		i = ranges[n];

		if (low == NULL) {
			if (i->flags & EXPR_F_INTERVAL_END) {
				/*
				 * End of interval mark
				 */
				expr_free(i);
				continue;
			} else {
				/*
				 * Start a new interval
				 */
				low = i;
				continue;
			}
		} else
			expr_get(low);

		mpz_sub(range, expr_value(i)->value, expr_value(low)->value);
		mpz_sub_ui(range, range, 1);

		mpz_and(p, expr_value(low)->value, range);

		if (!mpz_cmp_ui(range, 0))
			compound_expr_add(set, low);
		else if ((!range_is_prefix(range) ||
			  !(i->dtype->flags & DTYPE_F_PREFIX)) ||
			 mpz_cmp_ui(p, 0)) {
			struct expr *tmp;

			tmp = constant_expr_alloc(&low->location, low->dtype,
						  low->byteorder, low->len,
						  NULL);

			mpz_add(range, range, expr_value(low)->value);
			mpz_set(tmp->value, range);

			tmp = range_expr_alloc(&low->location, expr_value(low), tmp);
			tmp = set_elem_expr_alloc(&low->location, tmp);
			if (low->ops->type == EXPR_MAPPING)
				tmp = mapping_expr_alloc(&tmp->location, tmp, low->right);

			compound_expr_add(set, tmp);
		} else {
			struct expr *prefix;
			unsigned int prefix_len;

			prefix_len = expr_value(i)->len - mpz_scan0(range, 0);
			prefix = prefix_expr_alloc(&low->location, expr_value(low),
						   prefix_len);
			prefix->len = expr_value(i)->len;

			prefix = set_elem_expr_alloc(&low->location, prefix);
			if (low->ops->type == EXPR_MAPPING)
				prefix = mapping_expr_alloc(&low->location, prefix,
							    low->right);

			compound_expr_add(set, prefix);
		}

		if (i->flags & EXPR_F_INTERVAL_END) {
			expr_free(low);
			low = NULL;
		}
		expr_free(i);
	}

	/* Unclosed interval */
	if (low != NULL) {
		i = constant_expr_alloc(&low->location, low->dtype,
					low->byteorder, expr_value(low)->len,
					NULL);
		mpz_init_bitmask(i->value, i->len);

		i = range_expr_alloc(&low->location, expr_value(low), i);
		i = set_elem_expr_alloc(&low->location, i);
		if (low->ops->type == EXPR_MAPPING)
			i = mapping_expr_alloc(&i->location, i, low->right);

		compound_expr_add(set, i);
	}

	xfree(ranges);
	xfree(elements);
}