/* * Routines having to do with the 'struct sk_buff' memory handlers. * * Authors: Alan Cox * Florian La Roche * * Version: $Id: skbuff.c,v 1.4 2002/09/17 21:49:57 bdschuym Exp $ * * Fixes: * Alan Cox : Fixed the worst of the load balancer bugs. * Dave Platt : Interrupt stacking fix. * Richard Kooijman : Timestamp fixes. * Alan Cox : Changed buffer format. * Alan Cox : destructor hook for AF_UNIX etc. * Linus Torvalds : Better skb_clone. * Alan Cox : Added skb_copy. * Alan Cox : Added all the changed routines Linus * only put in the headers * Ray VanTassle : Fixed --skb->lock in free * Alan Cox : skb_copy copy arp field * Andi Kleen : slabified it. * * NOTE: * The __skb_ routines should be called with interrupts * disabled, or you better be *real* sure that the operation is atomic * with respect to whatever list is being frobbed (e.g. via lock_sock() * or via disabling bottom half handlers, etc). * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ /* * The functions in this file will not compile correctly with gcc 2.4.x */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int sysctl_hot_list_len = 128; static kmem_cache_t *skbuff_head_cache; static union { struct sk_buff_head list; char pad[SMP_CACHE_BYTES]; } skb_head_pool[NR_CPUS]; /* * Keep out-of-line to prevent kernel bloat. * __builtin_return_address is not used because it is not always * reliable. */ /** * skb_over_panic - private function * @skb: buffer * @sz: size * @here: address * * Out of line support code for skb_put(). Not user callable. */ void skb_over_panic(struct sk_buff *skb, int sz, void *here) { printk("skput:over: %p:%d put:%d dev:%s", here, skb->len, sz, skb->dev ? skb->dev->name : ""); BUG(); } /** * skb_under_panic - private function * @skb: buffer * @sz: size * @here: address * * Out of line support code for skb_push(). Not user callable. */ void skb_under_panic(struct sk_buff *skb, int sz, void *here) { printk("skput:under: %p:%d put:%d dev:%s", here, skb->len, sz, skb->dev ? skb->dev->name : ""); BUG(); } static __inline__ struct sk_buff *skb_head_from_pool(void) { struct sk_buff_head *list = &skb_head_pool[smp_processor_id()].list; if (skb_queue_len(list)) { struct sk_buff *skb; unsigned long flags; local_irq_save(flags); skb = __skb_dequeue(list); local_irq_restore(flags); return skb; } return NULL; } static __inline__ void skb_head_to_pool(struct sk_buff *skb) { struct sk_buff_head *list = &skb_head_pool[smp_processor_id()].list; if (skb_queue_len(list) < sysctl_hot_list_len) { unsigned long flags; local_irq_save(flags); __skb_queue_head(list, skb); local_irq_restore(flags); return; } kmem_cache_free(skbuff_head_cache, skb); } /* Allocate a new skbuff. We do this ourselves so we can fill in a few * 'private' fields and also do memory statistics to find all the * [BEEP] leaks. * */ /** * alloc_skb - allocate a network buffer * @size: size to allocate * @gfp_mask: allocation mask * * Allocate a new &sk_buff. The returned buffer has no headroom and a * tail room of size bytes. The object has a reference count of one. * The return is the buffer. On a failure the return is %NULL. * * Buffers may only be allocated from interrupts using a @gfp_mask of * %GFP_ATOMIC. */ struct sk_buff *alloc_skb(unsigned int size,int gfp_mask) { struct sk_buff *skb; u8 *data; if (in_interrupt() && (gfp_mask & __GFP_WAIT)) { static int count = 0; if (++count < 5) { printk(KERN_ERR "alloc_skb called nonatomically " "from interrupt %p\n", NET_CALLER(size)); BUG(); } gfp_mask &= ~__GFP_WAIT; } /* Get the HEAD */ skb = skb_head_from_pool(); if (skb == NULL) { skb = kmem_cache_alloc(skbuff_head_cache, gfp_mask & ~__GFP_DMA); if (skb == NULL) goto nohead; } /* Get the DATA. Size must match skb_add_mtu(). */ size = SKB_DATA_ALIGN(size); data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); if (data == NULL) goto nodata; /* XXX: does not include slab overhead */ skb->truesize = size + sizeof(struct sk_buff); /* Load the data pointers. */ skb->head = data; skb->data = data; skb->tail = data; skb->end = data + size; /* Set up other state */ skb->len = 0; skb->cloned = 0; skb->data_len = 0; atomic_set(&skb->users, 1); atomic_set(&(skb_shinfo(skb)->dataref), 1); skb_shinfo(skb)->nr_frags = 0; skb_shinfo(skb)->frag_list = NULL; return skb; nodata: skb_head_to_pool(skb); nohead: return NULL; } /* * Slab constructor for a skb head. */ static inline void skb_headerinit(void *p, kmem_cache_t *cache, unsigned long flags) { struct sk_buff *skb = p; skb->next = NULL; skb->prev = NULL; skb->list = NULL; skb->sk = NULL; skb->stamp.tv_sec=0; /* No idea about time */ skb->dev = NULL; skb->physindev = NULL; skb->physoutdev = NULL; skb->dst = NULL; memset(skb->cb, 0, sizeof(skb->cb)); skb->pkt_type = PACKET_HOST; /* Default type */ skb->ip_summed = 0; skb->priority = 0; skb->security = 0; /* By default packets are insecure */ skb->destructor = NULL; #ifdef CONFIG_NETFILTER skb->nfmark = skb->nfcache = 0; skb->nfct = NULL; #ifdef CONFIG_NETFILTER_DEBUG skb->nf_debug = 0; #endif #endif #ifdef CONFIG_NET_SCHED skb->tc_index = 0; #endif } static void skb_drop_fraglist(struct sk_buff *skb) { struct sk_buff *list = skb_shinfo(skb)->frag_list; skb_shinfo(skb)->frag_list = NULL; do { struct sk_buff *this = list; list = list->next; kfree_skb(this); } while (list); } static void skb_clone_fraglist(struct sk_buff *skb) { struct sk_buff *list; for (list = skb_shinfo(skb)->frag_list; list; list=list->next) skb_get(list); } static void skb_release_data(struct sk_buff *skb) { if (!skb->cloned || atomic_dec_and_test(&(skb_shinfo(skb)->dataref))) { if (skb_shinfo(skb)->nr_frags) { int i; for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) put_page(skb_shinfo(skb)->frags[i].page); } if (skb_shinfo(skb)->frag_list) skb_drop_fraglist(skb); kfree(skb->head); } } /* * Free an skbuff by memory without cleaning the state. */ void kfree_skbmem(struct sk_buff *skb) { skb_release_data(skb); skb_head_to_pool(skb); } /** * __kfree_skb - private function * @skb: buffer * * Free an sk_buff. Release anything attached to the buffer. * Clean the state. This is an internal helper function. Users should * always call kfree_skb */ void __kfree_skb(struct sk_buff *skb) { if (skb->list) { printk(KERN_WARNING "Warning: kfree_skb passed an skb still " "on a list (from %p).\n", NET_CALLER(skb)); BUG(); } dst_release(skb->dst); if(skb->destructor) { if (in_irq()) { printk(KERN_WARNING "Warning: kfree_skb on hard IRQ %p\n", NET_CALLER(skb)); } skb->destructor(skb); } #ifdef CONFIG_NETFILTER nf_conntrack_put(skb->nfct); #endif skb_headerinit(skb, NULL, 0); /* clean state */ kfree_skbmem(skb); } /** * skb_clone - duplicate an sk_buff * @skb: buffer to clone * @gfp_mask: allocation priority * * Duplicate an &sk_buff. The new one is not owned by a socket. Both * copies share the same packet data but not structure. The new * buffer has a reference count of 1. If the allocation fails the * function returns %NULL otherwise the new buffer is returned. * * If this function is called from an interrupt gfp_mask() must be * %GFP_ATOMIC. */ struct sk_buff *skb_clone(struct sk_buff *skb, int gfp_mask) { struct sk_buff *n; n = skb_head_from_pool(); if (!n) { n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); if (!n) return NULL; } #define C(x) n->x = skb->x n->next = n->prev = NULL; n->list = NULL; n->sk = NULL; C(stamp); C(dev); C(physindev); C(physoutdev); C(h); C(nh); C(mac); C(dst); dst_clone(n->dst); memcpy(n->cb, skb->cb, sizeof(skb->cb)); C(len); C(data_len); C(csum); n->cloned = 1; C(pkt_type); C(ip_summed); C(priority); atomic_set(&n->users, 1); C(protocol); C(security); C(truesize); C(head); C(data); C(tail); C(end); n->destructor = NULL; #ifdef CONFIG_NETFILTER C(nfmark); C(nfcache); C(nfct); #ifdef CONFIG_NETFILTER_DEBUG C(nf_debug); #endif #endif /*CONFIG_NETFILTER*/ #if defined(CONFIG_HIPPI) C(private); #endif #ifdef CONFIG_NET_SCHED C(tc_index); #endif atomic_inc(&(skb_shinfo(skb)->dataref)); skb->cloned = 1; #ifdef CONFIG_NETFILTER nf_conntrack_get(skb->nfct); #endif return n; } static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) { /* * Shift between the two data areas in bytes */ unsigned long offset = new->data - old->data; new->list=NULL; new->sk=NULL; new->dev=old->dev; new->physindev=old->physindev; new->physoutdev=old->physoutdev; new->priority=old->priority; new->protocol=old->protocol; new->dst=dst_clone(old->dst); new->h.raw=old->h.raw+offset; new->nh.raw=old->nh.raw+offset; new->mac.raw=old->mac.raw+offset; memcpy(new->cb, old->cb, sizeof(old->cb)); atomic_set(&new->users, 1); new->pkt_type=old->pkt_type; new->stamp=old->stamp; new->destructor = NULL; new->security=old->security; #ifdef CONFIG_NETFILTER new->nfmark=old->nfmark; new->nfcache=old->nfcache; new->nfct=old->nfct; nf_conntrack_get(new->nfct); #ifdef CONFIG_NETFILTER_DEBUG new->nf_debug=old->nf_debug; #endif #endif #ifdef CONFIG_NET_SCHED new->tc_index = old->tc_index; #endif } /** * skb_copy - create private copy of an sk_buff * @skb: buffer to copy * @gfp_mask: allocation priority * * Make a copy of both an &sk_buff and its data. This is used when the * caller wishes to modify the data and needs a private copy of the * data to alter. Returns %NULL on failure or the pointer to the buffer * on success. The returned buffer has a reference count of 1. * * As by-product this function converts non-linear &sk_buff to linear * one, so that &sk_buff becomes completely private and caller is allowed * to modify all the data of returned buffer. This means that this * function is not recommended for use in circumstances when only * header is going to be modified. Use pskb_copy() instead. */ struct sk_buff *skb_copy(const struct sk_buff *skb, int gfp_mask) { struct sk_buff *n; int headerlen = skb->data-skb->head; /* * Allocate the copy buffer */ n=alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask); if(n==NULL) return NULL; /* Set the data pointer */ skb_reserve(n,headerlen); /* Set the tail pointer and length */ skb_put(n,skb->len); n->csum = skb->csum; n->ip_summed = skb->ip_summed; if (skb_copy_bits(skb, -headerlen, n->head, headerlen+skb->len)) BUG(); copy_skb_header(n, skb); return n; } /* Keep head the same: replace data */ int skb_linearize(struct sk_buff *skb, int gfp_mask) { unsigned int size; u8 *data; long offset; int headerlen = skb->data - skb->head; int expand = (skb->tail+skb->data_len) - skb->end; if (skb_shared(skb)) BUG(); if (expand <= 0) expand = 0; size = (skb->end - skb->head + expand); size = SKB_DATA_ALIGN(size); data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); if (data == NULL) return -ENOMEM; /* Copy entire thing */ if (skb_copy_bits(skb, -headerlen, data, headerlen+skb->len)) BUG(); /* Offset between the two in bytes */ offset = data - skb->head; /* Free old data. */ skb_release_data(skb); skb->head = data; skb->end = data + size; /* Set up new pointers */ skb->h.raw += offset; skb->nh.raw += offset; skb->mac.raw += offset; skb->tail += offset; skb->data += offset; /* Set up shinfo */ atomic_set(&(skb_shinfo(skb)->dataref), 1); skb_shinfo(skb)->nr_frags = 0; skb_shinfo(skb)->frag_list = NULL; /* We are no longer a clone, even if we were. */ skb->cloned = 0; skb->tail += skb->data_len; skb->data_len = 0; return 0; } /** * pskb_copy - create copy of an sk_buff with private head. * @skb: buffer to copy * @gfp_mask: allocation priority * * Make a copy of both an &sk_buff and part of its data, located * in header. Fragmented data remain shared. This is used when * the caller wishes to modify only header of &sk_buff and needs * private copy of the header to alter. Returns %NULL on failure * or the pointer to the buffer on success. * The returned buffer has a reference count of 1. */ struct sk_buff *pskb_copy(struct sk_buff *skb, int gfp_mask) { struct sk_buff *n; /* * Allocate the copy buffer */ n=alloc_skb(skb->end - skb->head, gfp_mask); if(n==NULL) return NULL; /* Set the data pointer */ skb_reserve(n,skb->data-skb->head); /* Set the tail pointer and length */ skb_put(n,skb_headlen(skb)); /* Copy the bytes */ memcpy(n->data, skb->data, n->len); n->csum = skb->csum; n->ip_summed = skb->ip_summed; n->data_len = skb->data_len; n->len = skb->len; if (skb_shinfo(skb)->nr_frags) { int i; for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; get_page(skb_shinfo(n)->frags[i].page); } skb_shinfo(n)->nr_frags = i; } if (skb_shinfo(skb)->frag_list) { skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; skb_clone_fraglist(n); } copy_skb_header(n, skb); return n; } /** * pskb_expand_head - reallocate header of &sk_buff * @skb: buffer to reallocate * @nhead: room to add at head * @ntail: room to add at tail * @gfp_mask: allocation priority * * Expands (or creates identical copy, if &nhead and &ntail are zero) * header of skb. &sk_buff itself is not changed. &sk_buff MUST have * reference count of 1. Returns zero in the case of success or error, * if expansion failed. In the last case, &sk_buff is not changed. * * All the pointers pointing into skb header may change and must be * reloaded after call to this function. */ int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, int gfp_mask) { int i; u8 *data; int size = nhead + (skb->end - skb->head) + ntail; long off; if (skb_shared(skb)) BUG(); size = SKB_DATA_ALIGN(size); data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); if (data == NULL) goto nodata; /* Copy only real data... and, alas, header. This should be * optimized for the cases when header is void. */ memcpy(data+nhead, skb->head, skb->tail-skb->head); memcpy(data+size, skb->end, sizeof(struct skb_shared_info)); for (i=0; inr_frags; i++) get_page(skb_shinfo(skb)->frags[i].page); if (skb_shinfo(skb)->frag_list) skb_clone_fraglist(skb); skb_release_data(skb); off = (data+nhead) - skb->head; skb->head = data; skb->end = data+size; skb->data += off; skb->tail += off; skb->mac.raw += off; skb->h.raw += off; skb->nh.raw += off; skb->cloned = 0; atomic_set(&skb_shinfo(skb)->dataref, 1); return 0; nodata: return -ENOMEM; } /* Make private copy of skb with writable head and some headroom */ struct sk_buff * skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) { struct sk_buff *skb2; int delta = headroom - skb_headroom(skb); if (delta <= 0) return pskb_copy(skb, GFP_ATOMIC); skb2 = skb_clone(skb, GFP_ATOMIC); if (skb2 == NULL || !pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, GFP_ATOMIC)) return skb2; kfree_skb(skb2); return NULL; } /** * skb_copy_expand - copy and expand sk_buff * @skb: buffer to copy * @newheadroom: new free bytes at head * @newtailroom: new free bytes at tail * @gfp_mask: allocation priority * * Make a copy of both an &sk_buff and its data and while doing so * allocate additional space. * * This is used when the caller wishes to modify the data and needs a * private copy of the data to alter as well as more space for new fields. * Returns %NULL on failure or the pointer to the buffer * on success. The returned buffer has a reference count of 1. * * You must pass %GFP_ATOMIC as the allocation priority if this function * is called from an interrupt. */ struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, int newtailroom, int gfp_mask) { struct sk_buff *n; /* * Allocate the copy buffer */ n=alloc_skb(newheadroom + skb->len + newtailroom, gfp_mask); if(n==NULL) return NULL; skb_reserve(n,newheadroom); /* Set the tail pointer and length */ skb_put(n,skb->len); /* Copy the data only. */ if (skb_copy_bits(skb, 0, n->data, skb->len)) BUG(); copy_skb_header(n, skb); return n; } /* Trims skb to length len. It can change skb pointers, if "realloc" is 1. * If realloc==0 and trimming is impossible without change of data, * it is BUG(). */ int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc) { int offset = skb_headlen(skb); int nfrags = skb_shinfo(skb)->nr_frags; int i; for (i=0; ifrags[i].size; if (end > len) { if (skb_cloned(skb)) { if (!realloc) BUG(); if (pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) return -ENOMEM; } if (len <= offset) { put_page(skb_shinfo(skb)->frags[i].page); skb_shinfo(skb)->nr_frags--; } else { skb_shinfo(skb)->frags[i].size = len-offset; } } offset = end; } if (offset < len) { skb->data_len -= skb->len - len; skb->len = len; } else { if (len <= skb_headlen(skb)) { skb->len = len; skb->data_len = 0; skb->tail = skb->data + len; if (skb_shinfo(skb)->frag_list && !skb_cloned(skb)) skb_drop_fraglist(skb); } else { skb->data_len -= skb->len - len; skb->len = len; } } return 0; } /** * __pskb_pull_tail - advance tail of skb header * @skb: buffer to reallocate * @delta: number of bytes to advance tail * * The function makes a sense only on a fragmented &sk_buff, * it expands header moving its tail forward and copying necessary * data from fragmented part. * * &sk_buff MUST have reference count of 1. * * Returns %NULL (and &sk_buff does not change) if pull failed * or value of new tail of skb in the case of success. * * All the pointers pointing into skb header may change and must be * reloaded after call to this function. */ /* Moves tail of skb head forward, copying data from fragmented part, * when it is necessary. * 1. It may fail due to malloc failure. * 2. It may change skb pointers. * * It is pretty complicated. Luckily, it is called only in exceptional cases. */ unsigned char * __pskb_pull_tail(struct sk_buff *skb, int delta) { int i, k, eat; /* If skb has not enough free space at tail, get new one * plus 128 bytes for future expansions. If we have enough * room at tail, reallocate without expansion only if skb is cloned. */ eat = (skb->tail+delta) - skb->end; if (eat > 0 || skb_cloned(skb)) { if (pskb_expand_head(skb, 0, eat>0 ? eat+128 : 0, GFP_ATOMIC)) return NULL; } if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta)) BUG(); /* Optimization: no fragments, no reasons to preestimate * size of pulled pages. Superb. */ if (skb_shinfo(skb)->frag_list == NULL) goto pull_pages; /* Estimate size of pulled pages. */ eat = delta; for (i=0; inr_frags; i++) { if (skb_shinfo(skb)->frags[i].size >= eat) goto pull_pages; eat -= skb_shinfo(skb)->frags[i].size; } /* If we need update frag list, we are in troubles. * Certainly, it possible to add an offset to skb data, * but taking into account that pulling is expected to * be very rare operation, it is worth to fight against * further bloating skb head and crucify ourselves here instead. * Pure masohism, indeed. 8)8) */ if (eat) { struct sk_buff *list = skb_shinfo(skb)->frag_list; struct sk_buff *clone = NULL; struct sk_buff *insp = NULL; do { if (list == NULL) BUG(); if (list->len <= eat) { /* Eaten as whole. */ eat -= list->len; list = list->next; insp = list; } else { /* Eaten partially. */ if (skb_shared(list)) { /* Sucks! We need to fork list. :-( */ clone = skb_clone(list, GFP_ATOMIC); if (clone == NULL) return NULL; insp = list->next; list = clone; } else { /* This may be pulled without * problems. */ insp = list; } if (pskb_pull(list, eat) == NULL) { if (clone) kfree_skb(clone); return NULL; } break; } } while (eat); /* Free pulled out fragments. */ while ((list = skb_shinfo(skb)->frag_list) != insp) { skb_shinfo(skb)->frag_list = list->next; kfree_skb(list); } /* And insert new clone at head. */ if (clone) { clone->next = list; skb_shinfo(skb)->frag_list = clone; } } /* Success! Now we may commit changes to skb data. */ pull_pages: eat = delta; k = 0; for (i=0; inr_frags; i++) { if (skb_shinfo(skb)->frags[i].size <= eat) { put_page(skb_shinfo(skb)->frags[i].page); eat -= skb_shinfo(skb)->frags[i].size; } else { skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; if (eat) { skb_shinfo(skb)->frags[k].page_offset += eat; skb_shinfo(skb)->frags[k].size -= eat; eat = 0; } k++; } } skb_shinfo(skb)->nr_frags = k; skb->tail += delta; skb->data_len -= delta; return skb->tail; } /* Copy some data bits from skb to kernel buffer. */ int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) { int i, copy; int start = skb->len - skb->data_len; if (offset > (int)skb->len-len) goto fault; /* Copy header. */ if ((copy = start-offset) > 0) { if (copy > len) copy = len; memcpy(to, skb->data + offset, copy); if ((len -= copy) == 0) return 0; offset += copy; to += copy; } for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { int end; BUG_TRAP(start <= offset+len); end = start + skb_shinfo(skb)->frags[i].size; if ((copy = end-offset) > 0) { u8 *vaddr; if (copy > len) copy = len; vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]); memcpy(to, vaddr+skb_shinfo(skb)->frags[i].page_offset+ offset-start, copy); kunmap_skb_frag(vaddr); if ((len -= copy) == 0) return 0; offset += copy; to += copy; } start = end; } if (skb_shinfo(skb)->frag_list) { struct sk_buff *list; for (list = skb_shinfo(skb)->frag_list; list; list=list->next) { int end; BUG_TRAP(start <= offset+len); end = start + list->len; if ((copy = end-offset) > 0) { if (copy > len) copy = len; if (skb_copy_bits(list, offset-start, to, copy)) goto fault; if ((len -= copy) == 0) return 0; offset += copy; to += copy; } start = end; } } if (len == 0) return 0; fault: return -EFAULT; } /* Checksum skb data. */ unsigned int skb_checksum(const struct sk_buff *skb, int offset, int len, unsigned int csum) { int i, copy; int start = skb->len - skb->data_len; int pos = 0; /* Checksum header. */ if ((copy = start-offset) > 0) { if (copy > len) copy = len; csum = csum_partial(skb->data+offset, copy, csum); if ((len -= copy) == 0) return csum; offset += copy; pos = copy; } for (i=0; inr_frags; i++) { int end; BUG_TRAP(start <= offset+len); end = start + skb_shinfo(skb)->frags[i].size; if ((copy = end-offset) > 0) { unsigned int csum2; u8 *vaddr; skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; if (copy > len) copy = len; vaddr = kmap_skb_frag(frag); csum2 = csum_partial(vaddr + frag->page_offset + offset-start, copy, 0); kunmap_skb_frag(vaddr); csum = csum_block_add(csum, csum2, pos); if (!(len -= copy)) return csum; offset += copy; pos += copy; } start = end; } if (skb_shinfo(skb)->frag_list) { struct sk_buff *list; for (list = skb_shinfo(skb)->frag_list; list; list=list->next) { int end; BUG_TRAP(start <= offset+len); end = start + list->len; if ((copy = end-offset) > 0) { unsigned int csum2; if (copy > len) copy = len; csum2 = skb_checksum(list, offset-start, copy, 0); csum = csum_block_add(csum, csum2, pos); if ((len -= copy) == 0) return csum; offset += copy; pos += copy; } start = end; } } if (len == 0) return csum; BUG(); return csum; } /* Both of above in one bottle. */ unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, int len, unsigned int csum) { int i, copy; int start = skb->len - skb->data_len; int pos = 0; /* Copy header. */ if ((copy = start-offset) > 0) { if (copy > len) copy = len; csum = csum_partial_copy_nocheck(skb->data+offset, to, copy, csum); if ((len -= copy) == 0) return csum; offset += copy; to += copy; pos = copy; } for (i=0; inr_frags; i++) { int end; BUG_TRAP(start <= offset+len); end = start + skb_shinfo(skb)->frags[i].size; if ((copy = end-offset) > 0) { unsigned int csum2; u8 *vaddr; skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; if (copy > len) copy = len; vaddr = kmap_skb_frag(frag); csum2 = csum_partial_copy_nocheck(vaddr + frag->page_offset + offset-start, to, copy, 0); kunmap_skb_frag(vaddr); csum = csum_block_add(csum, csum2, pos); if (!(len -= copy)) return csum; offset += copy; to += copy; pos += copy; } start = end; } if (skb_shinfo(skb)->frag_list) { struct sk_buff *list; for (list = skb_shinfo(skb)->frag_list; list; list=list->next) { unsigned int csum2; int end; BUG_TRAP(start <= offset+len); end = start + list->len; if ((copy = end-offset) > 0) { if (copy > len) copy = len; csum2 = skb_copy_and_csum_bits(list, offset-start, to, copy, 0); csum = csum_block_add(csum, csum2, pos); if ((len -= copy) == 0) return csum; offset += copy; to += copy; pos += copy; } start = end; } } if (len == 0) return csum; BUG(); return csum; } void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) { unsigned int csum; long csstart; if (skb->ip_summed == CHECKSUM_HW) csstart = skb->h.raw - skb->data; else csstart = skb->len - skb->data_len; if (csstart > skb->len - skb->data_len) BUG(); memcpy(to, skb->data, csstart); csum = 0; if (csstart != skb->len) csum = skb_copy_and_csum_bits(skb, csstart, to+csstart, skb->len-csstart, 0); if (skb->ip_summed == CHECKSUM_HW) { long csstuff = csstart + skb->csum; *((unsigned short *)(to + csstuff)) = csum_fold(csum); } } #if 0 /* * Tune the memory allocator for a new MTU size. */ void skb_add_mtu(int mtu) { /* Must match allocation in alloc_skb */ mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info); kmem_add_cache_size(mtu); } #endif void __init skb_init(void) { int i; skbuff_head_cache = kmem_cache_create("skbuff_head_cache", sizeof(struct sk_buff), 0, SLAB_HWCACHE_ALIGN, skb_headerinit, NULL); if (!skbuff_head_cache) panic("cannot create skbuff cache"); for (i=0; i